

ing*soft*

DWA-A 143-2 Static Calculation for the Rehabilitation of Drains and Sewers

Lacmanovic Vladimir, Structural Engineer, IngSoft GmbH

25th May 2023

Free pipe and buried pipe

ATV-DVWK-A 127: Soil

- Great importance for structural calculation
- For a solid rock, the pipe only prevents leakage (solid rock is self-supported)
- Poor soil in bedding zone combined with great coverage or heavy traffic breaks the strongest pipe

ing so

- Soil types according to ATV-DVWK-A 127
- Interpretation of the geological survey sometimes doubles the efforts for the structural calculation
- Soil zones around pipe and Young's modulus accordingly

and contraction is an early to have an its second with this	Table	1: Type	s of soil									
	Group	Spec. gravity	Spec. Gravity under buoyancy	Internal friction angle	Elast de	ticity m grees o	odulus of com	s E _s in pactio	N/mm n D _{Pr} ii	² with n %	Exponent in Eqn. (3.02) [Amended]	Reduction factor for creep
245		γs kN/m³	γs kN/m³	φ' °	85	90	92	95	97	100	Z -	f ₁
	G1	20	11	35	2 ²⁾	6	9	16	23	40	0.4	1.0
E	G2	20	11	30	1.2	3	4	8	11	20	0.5	1.0
STATE A	G3	20	10	25	0.8	2	3	5	8	13	0.6	0.8
	G4	20	10	20	0.6	1.5	2	4	6	10	0.7	0.5

ATV-DVWK-A 127: Rigid Pipe-Soil-System stiffness $V_{RB} = S_R / S_{Bh}$

- $V_{RB} > 1 \rightarrow$ rigid Pipe-Soil-System (PSS)
- S_R Pipe stiffness, S_{Bh} horizontal bedding stiffness of the soil
- Concentration factor λ_R depends on bedding, stiffness ratio etc.
- Concrete, reinforced concrete and stoneware pipes \rightarrow always rigid PSS

ATV-DVWK-A 127: Flexible Pipe-Soil-System stiffness $V_{RB} = S_R / S_{Bh}$

ing*so*

- $V_{RB} \leq 1 \rightarrow$ flexible Pipe-Soil-System
- The pipe deforms enough to transmit the greater part of the loads on the nearby soil but only in the usability tolerance limits
- Rigidity of the PSS of thermoplastic, duroplastic and even metal pipes depend on the system stiffness

DWA-A143-2: General Design Form

- Semi-probabilistic partial safety concept
- Stress and stability design
 - S_D Design value of the influences $S_D = \Sigma$ (Influences x Partial safety factors γ_F)
 - Design value of the material resistance
 R_D = Material strength /

Partial safety factor for the specific material γ_{M}

- Deformation design
 - Characteristic loads $\gamma_F = 1$
 - Characteristic material resistance $\gamma_M = 1$

DWA-A143-2: Partial safety coefficients γ_F for influences

•	Permanent loads (Dead load, Earth loads, Surface loads, etc.)	$\gamma_{\rm F}$ = 1.35
•	Variable loads (Traffic loads except road traffic load, Groundwater)	$\gamma_{\rm F} = 1.50$
•	Road traffic loads	$\gamma_{\rm F} = 1.35$
•	Short term floodwater	$\gamma_{\rm F} = 1.10$
•	Internal pressure (including pressure surge)	$\gamma_{\rm F} = 1.50$
•	Inspection pressure	$\gamma_{F} = 1.20$
•	Temperature change	$\gamma_{F} = 1.10$
•	Imposed deformations	γ_{F} = 1.10

DWA-A143-2: Partial safety coefficients γ_M for material resistance

•	Plastic liners, hardened on site	γ _M = 1.35
•	Pre-fabricated plastic liners (Extrusion or similar)	γ _M = 1.25
•	Cement liner	γ _M = 1.50
•	Stainless steel	$\gamma_{M} = 1.15$
•	Resistance with a favourable effect (e.g., Imposed liner deformation	ions at HPC III)
		$\gamma_{M} = 1.00$
•	Concrete and vitrified clay host pipes for the proof of pressure zo	nes (eq. 102)
		γ_{M} = 1.50

Coefficients for combinations $\boldsymbol{\psi}$

- Temperature change combined with groundwater $\psi = 0.7$
- Actual groundwater combined with earth and traffic loads $\psi = 0.9$
- Replacement load for groundwater combined with earth and traffic loads

 $\psi = 0.7$

ing so

DWA-A143-2: Imperfections for circular profiles

Local imperfection

- Consider deformations in the host pipe during the installation of the liner as we as the abbreviation from the planned trace
- Consider structural imperfections (local decrease of stiffness and/or wall-thickness)
- Is required in the calculation to trigger the decisive buckling case

Ovalisation

• Is the form that host pipe takes after its cracked in crown, invert and springlines

Annular gap

 Occurs through shrinking of the resin in the liner or shrinking of the filling material

DWA-A143-2: Imperfections for oval (egg-shaped) profile

- Local deformation on the long side
- Four hinge deformation (ovalisation) inwards
- Local imperfection results as

$$ω_{L} = ω_{L} + ω_{GRV}/10 =$$

= (0,5% + 3,0%/10) x r_k
 $ω_{L} = 0.8\% r_{K}$

- For masoned profiles $\omega_{L} = 1 \%$
- Annular gap as a constant degree of shrinkage of ε = 0,4 % which corresponds a gap of 0,4% x r_K in springline and 0,6% x r_C in crown

ing*sof*

DWA-A143-2: Minimal required imperfections

Circular profile

Method	C.I.P.P.	Back- formed	Single pipe	Wounded without gap	Wounded	Pinched
Local imperfection	≥ 2%	≥ 2%	≥1%	≥ 1,5%	≥1%	≥ 2%
Ovalisation (HPC II, III)	≥ 3%	≥ 3%	0%	≥ 3%	0%	≥ 3%
Annular gap	≥ 0,5%	≥ 2%	≥ 1-2 mm	≥ 2	Material dependent	≥ 0.12%

Egg-shaped profile

	Non masoned host pipe	Masoned host pipe	
Local imperfection	\geq 0,5% (r _K) + ω_{grv} /10	\geq 1% (r _K) + ω_{grv} /10	
Ovalization (II,III)*	≥ 3% (crow	vn radius)*	
Annular gap	Degree of shrinkage ≥ 0,4%		

DWA-A143-2: Host pipe condition I

Host pipe alone is capable of bearing loads

- Leaks in connections
- No cracks (except capillary cracks)

Imperfections

- Local imperfection
- Annular gap

Influence

• Groundwater pressure

Required proofs

- Stresses and deformations
- Buckling (Stability)

ingsoft

DWA-A143-2: Host pipe condition II

Host pipe-soil-system is capable of bearing loads

- Longitudinal cracks, minor pipe deformation $\delta_v < 6 \%$
- Functionality of the lateral bedding proven through soil boring

Imperfections

- Local imperfection
- Ovalisation
- Annular gap

Influence

- Groundwater pressure Required proofs
 - Stresses and deformations
 - Buckling (Stability)

ing**soft** [

DWA-A143-2: Host pipe condition III

Host pipe-soil system no longer capable of bearing loads in the long-term

- Longitudinal cracks, significant pipe deformation $\delta_{_V} \geq 6~\%$

Imperfections

• As for HPC II

Influence

- Groundwater pressure
- Earth and traffic loads Required proofs
 - Stresses and deformations
 - Buckling (Stability)
 - Interaction proof

ing**soft** |

DWA-A143-2: Host pipe condition IIIa

As HPC III however

- The load transmission in the host pipe pressure zones is not possible due to insufficient strength of host pipe material
- Host pipe is cracked in fragments not in four joints
- HPC IIIa has an informative character only and finds place in appendix K of the DWA-A 143 part 2
- Liner is calculated as buried pipe (elastically bedded ring) according to the ATV-DVWK-A 127

DWA-A143-2: Host pipe condition II or III?

	Determination point	HPC II	HPC III
1	Ovalization $\omega_{\text{GR,V}}$	$\leq 6 \%$	> 6 %
2	Cover depth h	High	Low ¹
3	Traffic load influence	Low	High
4	Load increase in time (foundations, surface load)	No	Yes
5	Plaster marks are opening	No	Yes
7	Cavity formation in soil due to infiltration	No	Yes
1) No h < 1 h < 1	te: cover depth m and h < da for road traffic loads .5 m under railway loads		

DWA-A143-2: Eccentricity

HPC III only

- Distance of the rotation point (crown ٠ joint) to the mid-axis (the better the host pipe, the higher the value)
- In standard case $e_{G} = 0,35$ •

Zustand der Altrohrdruckzone im Kämpfer	Bezogene Gelenkexzentrizität e _G /t	Zugehörende bezogene Druck- zonenbreite b _D /t siehe Gl. (101)	Beispiel
Starke Schädigung • sichtbare Abplatzungen • geringe Druckfestigkeit • erhebliche Korrosion	≤ 0,25	≥ 0,67	
Normaler Zustand • keine oder nur geringe Abplatzungen • höhere Druckfestigkeit • geringe Korrosion = Regelfall	0,35	0,40	
Guter Zustand: • keine Abplatzungen • hohe Druckfestigkeit • keine Korrosion • neuwertiges Rohr	≤ 0,45	≥ 0,13	

Tabelle 14: Wahl der Gelenkexzentrizität e. in Abhängigkeit von der Altrohrdruckzone

DWA-A143-2: Traffic loads

Road traffic loads

- LM 1 according to DIN EN 1991-2
- Ground stresses due to LM 1 in a diagram form depending on
 - Host pipe length
 - Cover depth (0.5 10 m)
 - Diameter

Railway traffic loads

- LM 71 according to DIN EN 1991-2
- Ground stresses due to LM 71 in a diagram form for h_E > 1.1 m

Tabelle 16: Bodenspannungen p infolge von Eisenbahnverkehrslasten

Überdeckungshöhe ab Schwellenoberkante)	Spannung infolge von Belastung nach LM 71 (kN/m²)			
(m)	eingleisig	mehrgleisig		
1,10	65,5	65,5		
1,499	55,4	55,4		
1,50	48	49		
2,50	39	41		
4,00	26	33		
5,50	19	26		
≥10,00	10	15		

 $d_{m} = 0.1 \text{ m}$

120

DWA-A143-2: Verifications

Stability

- Stability proof using the Kappa diagrams
- Stability proof as stress proof according to the II order theory with γ-fold loads and a design E-Modulus considering the imperfections

Stress

- Stress proof is conducted using cross-section coefficients for moments and normal forces in the appendix of the DWA-A 143-2 set of rules
- Design loads must be applied; In HPC III partial safety factor for material must be alternatively set to γ_{M} = 1 to consider constraint effect
- Proof of soil limit stress preventing soil fracture

Deformations

- Characteristic loads and material properties must be applied
- Total deformation is limited to 10% (elastic + imperfections)
- Elastic deformations are limited to
 - $\delta_{v,el} \leq 3\%$ for water pressure
 - $\delta_{v,el} \leq 6\%$ for earth and traffic loads
 - $\delta_{v,el} \leq 2\%$ or 10 mm for railway loads (DB)

DWA-A143-2: Software solution and FEA

IngSoft EasyPipe A143-2 Module

- For circular and egg-shaped profiles and arbitrary rehabilitation method in HPC I, II and III
- Nonlinear Finite Element Calculation according to the II order theory

FEA for special profiles

- For special shape profiles general FEA software should be applied
- Femap with NX Nastran, Ansys

Thank you for your attention

Contact

- IngSoft GmbH Irrerstraße 17
 90403 Nuremberg Germany
- Tel. +49 911 430879-300
- E-mail: <u>statik@ingsoft.de</u> Internet: <u>www.ingsoft.de</u>

